Free Rad. Res. Comms., Vol. 17, No. 1, pp. 21-39 Reprints available directly from the publisher Photocopying permitted by license only

AN E.S.R. INVESTIGATION OF THE REACTIVE INTERMEDIATE GENERATED IN THE REACTION BETWEEN Fe^{II} AND H₂O₂ IN AQUEOUS SOLUTION. DIRECT EVIDENCE FOR THE FORMATION OF THE HYDROXYL RADICAL

S. CROFT, B.C. GILBERT, † J.R. LINDSAY SMITH and A.C. WHITWOOD

Department of Chemistry, University of York, Heslington, York YO1 5DD, UK

(Received March 26, 1992; in final form April 8, 1992)

The technique of E.S.R. spectroscopy, when employed in conjunction with a continuous flow system, provides direct evidence for the nature of free radicals formed from organic substrates in the presence of Fe^{II} and H_2O_2 in aqueous solution. It is shown, both via the identification of hydroxyl-radical adducts to alkenes and via the observed site-selectivity of radical attack, that the *hydroxyl radical* is formed as the reactive intermediate in the presence of various chelators (e.g. EDTA, DTPA). This approach also allows the rate constants for the $Fe^{II}-H_2O_2$ reaction in the presence of the different chelates to be determined; values obtained are in reasonable agreement with most of those measured by other methods. Examples of radical oxidation (by Fe^{II}) and reduction (by Fe^{II}) are revealed.

KEY WORDS: hydroxyl radical, Fenton reaction, E.S.R. spectroscopy, radical oxidation/reduction.

ABBREVIATIONS: DTPA, diethylenetriaminepentaacetic acid; EDDA, ethylenediaminediacetic acid; EDTA, ethylenediaminetetraacetic acid; HEDTA, N-(2-hydroxyethyl)ethylenediaminetriacetic acid; NTA, nitrilotriacetic acid.

INTRODUCTION

It has often been suggested that the hydroxyl radical, formed for example via reactions (1)-(3) in iron-peroxide systems, is a major species involved in the initiation of free-radical-mediated biological damage.^{1,2}

 $Fe^{iII} + H_2O_2 \longrightarrow Fe^{iI} + HO_2 + H^+$ (1)

$$Fe^{iii} + HO_2^{-}/O_2^{-} \longrightarrow Fe^{ii} + O_2 + H^+$$
 (2)

$$Fe^{II} + H_2O_2 \longrightarrow Fe^{III} + HO^- + HO^-$$
 (3)

However, the Fenton reaction [reaction (3)] is not necessarily as simple as depicted above and evidence for \cdot OH production from Fe^{II} and hydrogen peroxide is by no means conclusive. Though its generation was first proposed by Haber and Weiss in 1932,³ Bray and Gorin suggested⁴ that the crucial intermediate is FeO²⁺: qualitative and quantitative evidence has subsequently been offered to support claims that the intermediate is \cdot OH,⁵⁻⁷ FeO²⁺ (Refs. 8–10) and Fe^{II} (H₂O₂).¹¹

For example, evidence against the formation of \cdot OH from Fe^{II} and H₂O₂ was provided by Shiga¹⁰ who employed E.S.R. spectroscopy in conjunction with a flow

system. He compared the E.S.R. spectra of organic radicals produced under steadystate conditions from the $Ti^{III}-H_2O_2$ redox couple (believed to produce \cdot OH) and organic substrates with those from $Fe^{II}EDTA-H_2O_2$ under similar conditions. Results from the two couples were not identical: for example, in the reaction of ethanol the predominant signal was from the α -radical \cdot CHMeOH for $Ti^{III}-H_2O_2$ (as expected for reaction of \cdot OH) whereas \cdot CH₂CH₂OH predominated for $Fe^{II}-H_2O_2$ (an observation interpreted as evidence that \cdot OH was not involved).

Rush and Koppenol⁸ investigated the $Fe^{II}-H_2O_2$ reaction by comparing the reactivity of the intermediate generated from $Fe^{II}EDTA-H_2O_2$ with that of \cdot OH towards a series of organic substrates. In most cases (e.g. with formate, mannitol and imidazole) the reactivity matched that of \cdot OH but for other substrates (e.g. Bu^tOH, benzoate and acetate anions and arginine) it was concluded that the intermediate formed was less reactive than expected for \cdot OH. In a spectroscopic study of the reaction of $Fe^{II}HEDTA$ with H_2O_2 it was concluded¹¹ that an intermediate complex between $Fe^{II}and H_2O_2$ (which does not give \cdot OH) can be scavenged by added substrates.

Walling⁵ has suggested that the reactive intermediate from Fe^{II} and H₂O₂ under aqueous conditions is indeed \cdot OH; we have also argued^{6,7} that discrepancies between E.S.R. results for Ti^{III} and Fe^{II} could be understood if both systems serve as effective methods for generation of \cdot OH but that in the iron-containing system the α -alcohol radicals (e.g. \cdot CHMeOH) are destroyed by rapid reaction with Fe^{III}. Similarly, the apparently lower reactivity of the substrate Bu¹OH *may* be explained in terms of reduction of \cdot CH₂CMe₂OH by Fe^{II}: indeed, product studies¹² establish that CH₂=CMe₂ is formed in this reaction. A small yield of 2-methylpropene has also been detected (Rush and Koppenol, private communication), though it is not believed to be of sufficient concentration to account for the observed stoichieometry of the Fe^{II}-H₂O₂ reaction (1.7:1).

The reaction of Fe^{II} HEDTA with H_2O_2 in the presence of formate has also been studied by Czapski and his coworkers;¹³ these authors dispute the claim made for an intermediate $Fe^{II}-H_2O_2$ complex and assign the absorption detected to Fe^{III} (HEDTA)CO₂⁻, formed by reaction of \cdot OH with HCO₂⁻ to give CO₂⁻ which reacts with Fe^{III} HEDTA.

Polarographic and spectroscopic techniques have also been employed to determine the rate constant for the $Fe^{II}-H_2O_2$ reaction, which is found to depend critically upon pH and the nature of the added ligand. For example, reaction of Fe^{II} EDTA and H_2O_2 at pH 7 is believed to have k ca. 10^4 dm³ mol⁻¹s⁻¹ (Refs. 6, 7, 11, 14, 15) and HEDTA, NTA, and EDDA have rate constants somewhat greater;^{11,14} there is some discrepancy over the values claimed for Fe^{II} -DTPA (from 5×10^2 to 10^4 dm³ mol⁻¹s⁻¹: cf. Refs. 6, 7, 11 and 15), but in all cases the rate constants are appreciably greater than that associated with the aquated Fe^{II} complex (ca. 75 dm³ mol⁻¹s⁻¹: cf. Ref. 5). This may be taken to reflect the increase in the thermodynamic driving force associated with the reduction in E for the redox potential of the complexed ion [compare, for example, the value of 0.71 V for Fe^{III}/Fe^{II} (at low pH 3) with that of 0.12 for Fe^{III} EDTA/ Fe^{II} EDTA at pH 7 (Ref. 16); E for \cdot OH/H₂O₂ at pH 7 is 0.46 V].

The aim of the work reported here was two-fold: firstly, to employ E.S.R. spectroscopy and continuous-flow techniques under conditions similar to those reported by Shiga¹⁰ but with a range of substances, in an attempt to obtain clear and direct evidence as to the mediation of the hydroxyl radical (or otherwise). Secondly, we

intended to employ the E.S.R. technique and steady-state analysis to obtain rateconstants for the generation of the reactive intermediate (to compare with those obtained by more conventional techniques for following the reaction of iron): in this way we hoped to establish unambigously whether the free-radical reaction (monitored by E.S.R. spectroscopy) was indeed the major (or only) reaction pathway.

METHODS AND MATERIALS

Materials

All chemicals purchased were of the highest quality available (i.e. Analar Grade) and used without further purification. Iron(II) was used as its sulphate, iron(III) and titanium(III) as their chlorides (Fisons): hydrogen peroxide was supplied by Fisons as a solution of *ca*. 33% w/v and was titrated against potassium permanganate to determine its exact concentration. Chelates (some as their sodium salts) were obtained from both Aldrich Chemical Company and Sigma Chemical Company.

All experiments were carried out with deionized distilled water.

Methods

(i) E.S.R. measurements. E.S.R. spectra were recorded on a Varian E-104 and a Bruker ESP 300 Spectrometer, each employing 100 kHz modulation and equipped with an X-band klystron. Hyperfine splittings were measured directly from the spectrometer field scan, which was periodically recalibrated with an aqueous solution of Fremy's salt¹⁷ [a(N) 1.309 mT]. All g-values were measured by comparison with that of \cdot CHMeOH ($g \, 2.00321 \pm 0.0005$)¹⁸ itself compared with Fremy's salt ($g \, 2.00550$).¹⁹ Relative concentrations of radicals were determined from peak-height measurements (where line-widths were the same) or by double integration of peaks (using the ESP 300). Absolute radical concentrations were obtained by comparison with the doubly-integrated spectra from \cdot CH₂CMe₂OH (3×10^{-6} mol dm⁻³) generated under standard conditions.⁷

(ii) Continuous-flow experiments. These employed a three-way mixer which allows simultaneous mixing of three reagent streams prior to their passage through a flat aqueous-solution sample cell in the cavity of the E.S.R. spectrometer. Flow was maintained with a Watson-Marlow 502S peristaltic pump positioned on the inlet tubing: the mixing time (in the range 20-50 ms) was controlled by adjusting the flow-rate and was typically *ca.* 30 ms. Measurements of pH were made by use of a Russell pH Ltd glass electrode coupled to a Pye Unicam PW 9410 pH meter: measurements were made of the three separate solutions and of the reaction mixture at the exit from the E.S.R. cell. Adjustment of pH was made by addition of sulphuric acid or ammonia (d0.880; laboratory grade) to the metal-ion stream. The temperature of the combined solution was measured at the exit from the cell. The reagent streams were prepared in deionized distilled water which had been deoxygenated by passage of nitrogen for *ca.* 40 min; the flow of nitrogen was maintained throughout the experiment.

The reactions of the hydroxyl radical were studied using continuous-mixing experiments involving Ti^{III} and H_2O_2 , with the substrate in the third stream: typical concentrations after mixing were [Ti^{III}] $1.7 \times 10^{-3} \text{ mol dm}^{-3}$, [H₂O₂]

FIGURE 1 E.S.R. spectra of \cdot CHMeOH (\bullet) and \cdot CH₂CH₂OH (\circ) obtained at pH 1.9 with the Ti^{III}/H₂O₂ redox couple in the presence of ethanol [Ti^{III}]₀ 1.7 × 10⁻³ [H₂O₂] 1.7 × 10⁻² [EtOH]₀ 0.6 mol dm⁻³.

 1.7×10^{-2} mol dm⁻³ and [substrate] in large excess (usually ~ 3% v/v for alcohols, 1% v/v for alkenes). At high pH values, Ti^{III} was chelated by the addition of EDTA to the metal stream (to give a final concentration of 3.4 × 10⁻³ mol dm⁻³).

Related experiments with iron involved the use of iron(II) sulphate (typically *ca*. 10^{-3} mol dm⁻³ after mixing, with added chelate at double this concentration), hydrogen peroxide (typically in the range 10^{-3} – 1.6×10^{-2} mol dm⁻³) and substrate (in excess, as above).

(iii) Computer simulations. Simulations of reaction kinetics were carried out with a program (Simula) provided by Dr T.M.F. Salmon and modified by Dr M.J. Brown for use on a VAX mainframe computer. The E.S.R. spectra simulation program was written by Dr M.F. Chiu and modified to run on the VAX computer.

RESULTS AND DISCUSSION

E.S.R. Studies of the $Ti^{III}-H_2O_2$ Reaction as a Source of $\cdot OH$

Our initial experiments involved recording E.S.R. spectra of organic radicals in continuous-flow experiments, with mixing time 0.027 s, in which we mixed solutions of Ti^{III} (to a final concentration of $1.7 \times 10^{-3} \text{ mol dm}^3$), H₂O₂ (final concentration $1.7 \times 10^{-2} \text{ mol dm}^3$) and the substrate [in excess, so as to scavenge \cdot OH, formed as in reaction (4)], both at pH 2 and 7. Our strategy was to determine selectivities of reaction for both hydrogen-atom abstraction (from alkanols, acids) and addition (to alkenes). The results are illustrated in Figures 1 and 2, which show the excellent signal-to-noise ratios obtained (corresponding to an observed steady-state concentration of organic radicals of *ca*. $3 \times 10^{-6} \text{ mol dm}^{-3}$), and Table I contains details of the hyperfine splittings of the radicals obtained and their assignments (for example to *hydroxyl* adducts of the alkenes).²⁰ Table II contains selected data on the ratios of radicals formed in experiments to determine the site-selectivity of the intermediate radical (believed to be \cdot OH).

FIGURE 2 E.S.R. spectra of \cdot CHMeCH(OH)CO₂H (\bullet) and \cdot CH(CO₂H)CHMeOH (\odot) obtained at pH 1.9 with the Ti^{III}/H₂O₂ redox couple and crotonic acid. [Ti^{III}]₀ 1.7 × 10⁻³ [H₂O₂] 1.7 × 10⁻² [MeCH=CHCO₂H] 1.7 × 10⁻² mol dm⁻³

Several features are worthy of note. For example, methanol and *t*-butyl alcohol react to form solely \cdot CH₂OH and \cdot CH₂CMe₂OH, and dimethyl sulphoxide reacts to give a strong signal from the methyl radical [as expected on the basis that \cdot OH is indeed formed: *cf.* reactions (4) and (5)]. When ethanol was used as substrate both α (\cdot CHMeOH) and β (\cdot CH₂CH₂OH) radicals were detected (see Figure 1), with steady-state ratio [α]: [β] *ca.* 7:1. This does not reflect *directly* the ratio of the rate constants for attack of \cdot OH at the α - and β -positions of ethanol (13:1; see e.g. Ref. 21 and references therein); the apparent discrepancy is attributed to the reaction of the α -radical with H₂O₂ [see reactions (6) and (7), for the latter of which *k* is *ca.* 10⁵ dm³ mol⁻¹ s⁻¹]²² which will serve to reduce [\cdot CHMeOH] at the concentrations of H₂O₂ employed.^{6,7,21}

$$Ti^{III} + H_2O_2 \longrightarrow Ti^{IV} + HO \cdot + OH^-$$
 (4)

$$OH + Me_2SO \longrightarrow [Me_2S(OH)O \cdot] \longrightarrow Me \cdot + MeSO_2H$$
 (5)

$$\cdot OH + EtOH \longrightarrow CHMeOH + \cdot CH_2CH_2OH \qquad (6)$$

$$\cdot \text{CHMeOH} + \text{H}_2\text{O}_2 \longrightarrow \cdot \text{OH} + \text{OH}^- + \text{+}\text{CHMeOH}$$
(7)

For propan-2-ol both α - and β -radicals were observed (with the former the major species detected) and for propan-1-ol the α -, β -, and γ -radicals were all detected (in the ratio 2.8:1.6:1.0) (n.b. in earlier experiments reported by Shiga,¹⁰ only the α -radical was described): again, we argue that reaction of \cdot OH is likely to lead to a considerable predominance of the corresponding α -radical (*cf.* pulse-radiolysis results summarized in Ref. 23) and that further oxidation takes place [*cf.* reaction (7)].

TABLE I

E.S.R. parameters of radicals detected from the Ti^{III}/H_2O_2 couple at pH 2 and the Ti^{III} E	DTA/H_2O_2 and
Fe^{II}/H_2O_2 couples at pH 7	

<u> </u>			Hyperfine splittings ^b (mT)			
Substrate	pН	Radicals produced ^a	<i>a</i> (α-H)	<i>a</i> (β-H)	<i>а</i> (ү-Н)	g^{c}
СН,ОН	2, 7	· CH ₂ OH	1.76	-	0.13 ^d	2.0031
CH,CH,OH	2, 7	СН, СНОН	1.51	2.26	-	2.0032
	2, 7	· CH,CH,OH	2.18	2.78	-	2.0026
CH,CH,CH,OH	2, 7	СН,СН,СНОН	1.48	2.13	-	2.0032
	2, 7	CH ₃ CHCH ₂ OH	2.17	1.98(2) 2.55(3)	-	2.0026
	2.7	· CH, CH, CH, OH	2.18	2.71	-	2.0026
CH.CH(OH)CH.	2.7	$\cdot C(CH_3)_{0}OH$	2.00	_	-	2.0033
enjen(enjenj	2.7	· CH ₃ CH(OH)CH ₃	2.21	2.35	0.08	2,0026
CH,CH,CO,H	2	CH, CHCO, H	2.00	2.49	-	2.0033
011,011,00211	2	· CH, CH, CO, H	2.23	2.67	-	2.0027
CH.CH.CO-	7	CH,CHCO,	2.05	2.50	-	2.0033
0113012002	7	· CH ₂ CH ₂ CO ₅	2.23	2.58	-	2.0025
(CH ₂) ₂ COH	2.7	$\cdot CH_{2}C(OH)(CH_{1})_{2}$	2.22	-	0.14	2.0024
$(CH_{2})_{2}SO$	2.7	• CH ₃	2.27	_	-	2.0025
Z-HO ₂ CCH=CHCO ₂ H	2	HO,CCH(OH)CHCO,H	2.08	1.32	-	2.0037
$Z_{-}^{-}O_{2}CCH=CHCO_{1}^{-}$	7	-O,CCH(OH)CHCO	2.02	1.56	-	2.0035
HOCH ₂ CH=CHCH ₂ OH	2.7	HOCH, CH(OH)CHCH, OH	1.78	2.29(2)	-	2.0023
	. ,	2 , 2		2.18	-	
	2, 7	HOCH ₂ CH=CHCHOH	1.37(2)	0.94(2)		2.0029
		-	0.39	-		
$H_2C = CHCH_2OH$	2, 7	ĊH(CH ₂ OH)	2.02	2.18	-	2.0024
	2, 7	\cdot CH ₂ CH(OH)CH ₂ OH	2.20	2.50		2.0025
	2, 7	H ₂ C=CHĊHOH	1.33(3)	-	-	2.0028
			0.37	-	-	
$(CH_3)_2C = CHCH_2OH$	2, 7	(CH ₃) ₂ CCH(OH)CH ₂ OH	~	0.98	-	2.0026
		_	-	2.35(6)	-	
	2	(CH ₃) ₂ C(OH)CHCH ₂ OH	2.13	2.37	0.11	2.0023
CH ₃ CH=CHCO ₂ H	2	CH ₃ CHCH(OH)CO ₂ H	2.18	1.62	_	2.0025
	2	CH-CH(OH)CHCO-H	2.19	1.57	0.16	2.0033
CH CH-CHCO-	7	CH, CHCH(OH)CO-	2.15	1.56		2.0027
				2 55(3)	-	
	7	CH ₃ CH(OH)ĊHCO ₂ ⁻	2.04	1.57	0.15	2.0031

^aFor comparison of the Ti^{III} and Fe^{II} complexes, see text.

^b±0.01.

 $^{\circ} \pm 0.0001.$

^dSplitting from the hydrogen of the hydroxyl group.

Steady-state analysis (and exploration of the dependence of the $[\alpha]/[\beta]$ ratio on H₂O₂) have been reported^{6,7,21,24} and will not be repeated here.

Reaction of propanoic acid led to the detection of more or less equimolar concentrations of the α - and β -radicals \cdot CHMeCO₂H and \cdot CH₂CH₂CO₂H respectively, for which the ratio was not found to be sensitive to [H₂O₂]. This pattern of behaviour is not unexpected: though \cdot CHMeCO₂H is the more stabilized radical, attack of the

RIGHTSLINK()

TA	BL	E	Π
----	----	---	---

Ratios of steady-state concentrations of radicals ($[\alpha]/[\beta]$) detected by E.S.R. spectroscopy in experiments with the Ti^{III}-H₂O₂ and Fe^{II}-H₂O₂ redox couples in aqueous solution

Substrate	Ті ^ш (рН 2)ª	Ti ^{III} EDTA (pH 7) ^b	Fe ^{ll} EDTA (pH 7)°
	71 ± 01	41 + 0.1	$0.4 + 0.1^{d}$
CH ₂ CH ₂ CH ₂ CH ₂ OH	1.8 ± 0.3	0.7 + 0.3	e
Me ₂ CHOH	1.8 ± 0.1	1.7 ± 0.1	_e
CH ₃ CH ₂ CO ₂ H	0.9 ± 0.3		
$CH_3CH_2CO_2^-$		1.6 ± 0.3	$2.5~\pm~0.3$
$CH_2 = CHCH,OH$	1.4 ± 0.8	2.8 ± 0.8	2.2 ± 0.3
MeCH=CHCO ₂ H	0.6 ± 0.1	0.7 ± 0.1	0.8 ± 0.3
HOCH ₂ CH=CHCH ₂ OH	4.2 ± 0.1	$4.3~\pm~0.1$	_e

^a[Ti^{III}]₀ 1.7 × 10⁻³, [H₂O₂]₀ 1.6 × 10⁻² mol dm⁻³.

 b [Ti^{III}]₀ 1.7 × 10⁻³, [EDTA]₀ 3.4 × 10⁻², [H₂O₂]₀ 1.6 × 10⁻² mol dm⁻³.

 $[Fe^{11}] 6.7 \times 10^{-4}$, $[EDTA]_0 1.34 \times 10^{-3}$, $[H_2O_2]_0 1.6 \times 10^{-2} \text{ mol dm}^{-3}$.

^dAs (c) but with $[H_2O_2]_0 1.0 \times 10^{-2} \text{ mol dm}^{-3}$

^eOnly a trace of the oxygen-conjugated radical was detected (see text). Errors ± 1 S.D., n = 3.

electrophilic hydroxyl radical on the α -H would be retarded by the electron-withdrawing effect of the carboxyl group (on the assumption that polar effects are important in the transition state).

Reaction of Ti^{III} and H_2O_2 in the presence of alkenes led to the detection of the hydroxyl adduct for maleic acid and both adducts for crotonic acid [• CHMeCH (OH)CO₂H and • CH(CO₂H)CH(OH)Me – in the ratio of 1.0:1.6]; with but-2-ene-1,4-diol (HOCH₂CH=CHCH₂OH), E.S.R. signals were detected from both the adduct • CH(CH₂OH)CH(OH)CH₂OH and the radical formed by hydrogen abstraction • CH(OH)CH=CHCH₂OH (with the former favoured), and with 3-methyl-but-2-ene-1-ol (Me₂C=CHCH₂OH) the spectrum was dominated by the adduct • CMe₂CH(OH)CH₂OH. Allyl alcohol gave signals from both of the hydroxyl adducts, in the ratio 1.4:1.0 [• CH(CH₂OH)₂ to • CH₂CH(OH)CH₂OH], with a trace of • CH(OH)CH=CH₂. These results show the generally accepted behaviour of • OH – with its preference for addition rather than abstraction, ²⁵ and, at least for the bulky alkenes, a regioselectivity governed in part by steric effects.

Generally similar results (see Table I) were obtained from experiments at pH 7 (in the presence of EDTA to complex Ti^{III}), but several points are worthy of note. For example, the ratio of α - to β -radicals from ethanol was reduced to 4:1, an observation which is believed²¹ to reflect the oxidation of the α -radical by Ti^{IV}EDTA [reaction (8)]. The increase in the ratio of α : β radicals from propanoic acid (1.6:1) may be explained in terms of the reduction in the electron-withdrawing effect of the carboxyl group upon ionization. Results for the alkenes were almost identical to those observed at pH 2.

$$Ti^{IV}EDTA + \cdot CHMeOH \longrightarrow Ti^{III}EDTA + + CHMeOH$$
 (8)

FIGURE 3 E.S.R. spectrum of \cdot CH₂CMe₂OH obtained at pH 7.1 with Fe^{II}EDTA/H₂O₂ and Bu¹OH. [Fe^{II}]₀ 1.7 × 10⁻³, [EDTA] 3.4 × 10⁻³, [H₂O₂] 1.7 × 10⁻² [Bu¹OH]₀ 0.35 mol dm⁻³.

Comparison of the $Fe^{II}EDTA/H_2O_2$ and Ti^{III}/H_2O_2 Systems: Site-selectivity of Attack

Initial experiments with the Fe^{II}/H₂O₂ redox couple were carried out using similar conditions and concentrations to those used for the Ti^{III}-H₂O₂ system (with $[H_2O_2]_0$ 1.7 × 10⁻² mol dm⁻³, $[Fe^{II}]_0$ 1.7 × 10⁻³ mol dm⁻³ and [EDTA] 3.4 × 10⁻³ mol dm⁻³), at pH *ca.* 7.

With Bu'OH as substrate the radical \cdot CH₂CMe₂OH was detected (see Figure 3) with signal-to-noise ratio of *ca*. 20:1. A noticeable line-broadening (ΔB 0.1 mT, *cf*. 0.06 mT for Ti^{III}-H₂O₂) reflects the presence of paramagnetic iron complexes: for [Fe^{II}]₀ 6.7 × 10⁻⁴ mol dm⁻³ a decrease in line-width (0.08 mT) was observed. As [H₂O₂]₀ was then varied, the maximum value of the radical concentration was observed for a value of 5 × 10⁻³ mol dm⁻³. In the experiments which followed we used [Fe^{II}]₀ 6.7 × 10⁻⁴ mol dm⁻³, with [H₂O₂]₀ in the range 1.6 × 10⁻²- 5 × 10⁻³ mol dm⁻³.

Methanol gave a relatively weak spectrum of \cdot CH₂OH and ethanol gave signals from both \cdot CH₂CH₂OH and \cdot CHMeOH (n.b. Shiga¹⁰ reports only the β -radical). Improved signal-to-noise ratios were observed at *low* hydrogen peroxide concentrations (see e.g. Figure 4): for [H₂O₂]₀ 1.0 \times 10⁻² mol dm⁻³, the signal-to-noise ratio was *ca.* 100 with [α] : [β] in the ratio 1 : 2.6. Though the corresponding α -radical could not be detected from propan-2-ol, propan-1-ol also gave detectable signals from the α -radical, along with those from the β - and γ -isomers (see Table II) – though, as with ethanol, the contrast between the apparent behaviour of the Ti^{III}/H₂O₂ and Fe^{II}ED-TA/H₂O₂ couples is clear.

Reaction with propanoic acid gave both the α -radical (· CHMeCO₂⁻) and β -radical (· CH₂CH₂CO₂⁻), in the ratio 2.5:1.0, and *hydroxyl-radical adducts* were detected from the alkenes investigated. Maleic acid gave signals from · CH(CO₂⁻)CH(OH)-CO₂⁻, crotonic acid gave both · CH(CO₂⁻)CHMeOH and · CHMeCH(OH)CO₂⁻ (ratio 1:1.3), and allyl alcohol gave both · CH(CH₂OH)₂ and · CH₂CH(OH)CH₂OH in the ratio 2.2:1 [no trace of · CH(OH)CH=CH₂ was seen until [H₂O₂]₀ was lowered

FIGURE 4 E.S.R. spectra of \cdot CHMeOH (\bullet) and \cdot CH₂CH₂OH (\circ) obtained at pH7 with the Fe^{II}EDTA/H₂O₂ couple and ethanol. [Fe^{II}]₀ 6.7 × 10⁻⁴ [EDTA]₀ 1.3 × 10⁻³ [EtOH]₀ 0.6. (a) [H₂O₂] 1.7 × 10⁻², (b) [H₂O₂] 1.0 × 10⁻² mol dm⁻³.

to 5.0×10^{-3} mol dm⁻³]. But-2-ene-1,4-diol gave dominant signals from \cdot CH(CH₂OH)CH(OH)CH₂OH with traces of \cdot CH(OH)CH=CHCH₂OH, and Me₂C=CHCH₂OH gave almost entirely \cdot CMe₂CH(OH)CH₂OH.

Dimethyl sulphoxide gave a strong E.S.R. spectrum of the methyl radical, as with Ti^{III}.

The production of *hydroxyl-radical* adducts (and \cdot Me from DMSO) in the Fe^{II}EDTA/H₂O₂ system strongly suggests that the *hydroxyl* radical is indeed formed as the crucial *radical* intermediate during the Fe^{II}EDTA-H₂O₂ reaction. In further

support of this assertion is the observation that the site selectivity of the reactive intermediate is essentially the same as that in the $Ti^{III}EDTA$ system (i.e. $\cdot OH$): it seems highly unlikely that these observations could reflect the involvement of a complex or metal-centred intermediate in the oxidations of organic molecules.

The clear differences in $[\alpha]/[\beta]$ ratio observed for the alcohols studied in Ti^{III} and Fe^{II}-based systems can then be effectively explained if it is assumed that Fe^{III} EDTA selectively removes (oxidises) the α -radicals [see reactions (9)–(11)]. Preliminary kinetic simulations of the effect on the observed $[\alpha]:[\beta]$ ratio with the inclusion of reaction (11) in the mechanistic scheme provide confirmation of the consistency of this argument and suggests a value of ca. $10^9 \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$ for the rate constant for reaction (11).⁶ This aspect of our work has been extended through more detailed kinetic calculations described below.

$$Fe^{II}EDTA + H_2O_2 \longrightarrow Fe^{III}EDTA + HO \cdot + OH$$
 (9)

$$HO \cdot + EtOH \rightarrow CHMeOH + CH_2CH_2OH$$
 (10)

....

RIGHTSLINKA)

$$\cdot \text{CHMeOH} + \text{Fe}^{\text{III}} \text{EDTA} \longrightarrow \text{CHMeOH} + \text{Fe}^{\text{III}} \text{EDTA}$$
(11)

The increase in the proportion of α -radical from the propanoate anion in the Fe^{II}EDTA system compared with Ti^{III}-EDTA suggests that \cdot CH₂CH₂CO₂⁻ might be reduced relatively readily by Fe^{II}EDTA (*cf.* the reaction of \cdot CH₂CMe₂OH described earlier).

Selectivity of the Intermediate Formed in Other $Fe^{II}-H_2O_2$ Reactions

The experiments described above, with propanoic acid and crotonic acids at pH *ca*. 7, were repeated for the $Fe^{II}-H_2O_2$ reaction in the presence of the chelates HEDTA, DTPA, NTA and EDDA. We employed conditions as follows: $Fe^{II} 6.7 \times 10^{-4}$, H_2O_2 $5.3 \times 10^{-3} \text{ mol dm}^{-3}$ (with $[L] = 2[Fe^{II}]$ for HEDTA and DTPA; $[L] = 3[Fe^{II}]$ for NTA and EDDA). In each case the ratios of the steady-state concentrations of radicals $CH_3\dot{C}HCO_2^-$ and $\cdot CH_2CH_2CO_2^-$ (from propanoic acid) and $\cdot CHMeCH(OH)CO_2^-$ and $\cdot CH(CO_2^-)CHMeOH$ (from crotonic acid) were, within experimental error, identical to those observed with $Fe^{II}EDTA$ (see Table II). This provides very firm evidence indeed to support our claim that a unique intermediate - the hydroxyl radical - participates as the crucial radical species in the reaction of H_2O_2 with Fe^{II} complexed by these ligands.

Kinetic Analysis of the Fe^{II} - H_2O_2 Reactions

Despite the clear evidence that E.S.R. spectroscopy supports the involvement of \cdot OH in the Fe^{II}EDTA reaction there remains the distinct possibility (not always addressed) that the radicals detected are not those on the main reaction pathway, but rather those formed in a minor reaction. To answer this potential criticism we therefore carried out a full kinetic analysis of the predicted behaviour of the concentrations of radicals detected as a function of experimental variables (e.g. concentrations of reagents) — in an attempt to match the rate of disappearance of Fe^{II} to the generation of \cdot OH and to obtain the corresponding rate constant of the radical-generating process.

The steps which occur in a system containing Fe^{II} , H_2O_2 , and organic substrate RH are believed to be reactions (3) and (12)-(15) (ligands for the metal ions are omitted

for simplicity). In a typical flow-system study such as that presented here it is believed²⁶ that \cdot OH and $\mathbf{R} \cdot$ are present in steady-state concentrations (i.e. that the radicals detected are those formed *in* the cavity); appropriate kinetic analysis for the system, under conditions with $[\mathbf{H}_2\mathbf{O}_2]_0 \gg [\mathbf{Fe}^{11}]_0$, and with an excess of substrate [to scavenge \cdot OH via reaction (12)] shows that two crucial equations can then be derived. These are eq. (16), which relates the radical concentration ($\mathbf{R} \cdot$) to initial concentrations of reagents and also the time between mixing and observation (*t*) and eq. (17) which leads to the prediction that as $[\mathbf{H}_2\mathbf{O}_2]_0$ is varied, the concentration of [$\mathbf{R} \cdot$] gives a "peak" with maximum at a value of $\mathbf{H}_2\mathbf{O}_2$ as indicated. These relationships provide an opportunity for verification of the predicted behaviour and for determination of k_3 .

$$Fe^{II} + H_2O_2 \longrightarrow Fe^{III} + HO \cdot + OH$$
 (3)

$$\cdot OH + RH \longrightarrow H_2O + R \cdot$$
(12)

$$\mathbf{R} \cdot + \mathbf{R} \cdot \longrightarrow$$
 non-radical products (13)

$$Fe^{ii} + \cdot OH \longrightarrow Fe^{iii} + -OH$$
 (14)

$$H_2O_2 + \cdot OH \longrightarrow HO_2 \cdot + H_2O$$
 (15)

$$[\mathbf{R} \cdot] = \left(\frac{k_3[\mathbf{F}e^{II}]_0[\mathbf{H}_2\mathbf{O}_2]_0}{2k_{13}}\right)^{1/2} \exp\left(\frac{k_3[\mathbf{H}_2\mathbf{O}_2]_0t}{2}\right)$$
(16)

$$[\mathbf{H}_2 \mathbf{O}_2]_{R_{\text{max}}} = \frac{1}{k_3 t}$$
(17)

Confirmation of the validity of the kinetic analysis was first attempted via study of the reaction of \cdot OH (from Fe^{II}EDTA and H₂O₂) with Bu^tOH, employing [Fe^{II}]₀ 6.7×10^{-4} mol dm⁻³, [EDTA]₀ 1.34×10^{-3} mol dm⁻³ [Bu¹OH] 0.35 mol dm⁻³, pH 7 (measured at the exit from the cavity) and t 0.027 s. The concentration of [H₂O₂]₀ was varied over the range 10^{-2} - 10^{-3} mol dm⁻³; as expected on the basis of Eq. (17) the predicted maximum in [\cdot CH₂CMe₂OH] is obtained (Figure 5), and a value of (7.6 ± 0.9) $\times 10^{3}$ dm³ mol⁻¹s⁻¹ derived from the value of [H₂O₂]_{*R*max} and *t*. In a further set of experiments, with [H₂O₂]₀ 5.3×10^{-3} mol dm⁻³ we explored the dependence of [R \cdot] upon *t*. As predicted, a plot of ln [\cdot CH₂CMe₂OH] vs. *t* is a straight line (Figure 6) from which, via analysis according to Eq. (16), k_3 is calculated as (7.1 ± 0.4) $\times 10^{3}$ dm³ mol⁻¹ s⁻¹, i.e. within experimental error the same as that calculated via Eq. (16).

The value for the rate constant for generation of \cdot OH (k_3) from Fe^{II}EDTA and H₂O₂ is encouragingly close to those obtained by Rush and Koppenol⁸ and Sutton and Winterbourn¹⁵ (see Table III) which strongly suggests that the hydroxyl-radical generation pathway represents the dominant, if not sole, mechanism of reaction. The value of k_3 is somewhat lower than that obtained in our preliminary investigation^{6,7} (reported as $1.4 \times 10^4 \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$), an apparent discrepancy which is believed to reflect the use of 1:1 ratio of Fe^{II} to EDTA in the earlier work (since Fe^{II}EDTA is known to form a 1:1 complex).²⁷

Thus, via a set of subsequent experiments we have shown that k_3 is especially sensitive to the relative concentrations of Fe^{II} and EDTA when the latter is approximately the same as the former but insensitive to the ratio when the latter is in

/**^**

FIGURE 5 Variation of [\cdot CH₂CMe₂OH] with [H₂O₂]₀ in experiment with the Fe^{II}EDTA/H₂O₂/Bu^IOH reaction, at pH 7.1, 296 K and with mixing time 27 ms.

significant excess (e.g. in ca. 2:1 ratio). Our experiments also confirm k_3 as $(1.0 \pm 0.1) \times 10^4 \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$ for equimolar concentrations with measured exit pH as 7.0, as noted before. The reason for this difference is that for the 1:1 ratio there is a significant change in pH between mixing and the point at which pH is measured after the cell [on account of the production of OH⁻ in reaction (3)]; indeed for an experiment with a measured final pH of ca. 7 an initial pH of 4.0 is calculated. In contrast, the addition of an excess of EDTA (e.g. with ratio ca. 2:1) provides an effective buffering action so that the measured final concentration is then approximately the same as that on mixing. Thus we believe that the appropriate value of k_3 at pH 7.1 is indeed $(7.1 \pm 0.4) \times 10^3 \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$ and that at pH ca. 4 the higher value (ca. $10^4 \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$) is appropriate. This was confirmed by experiments with Fe^{II}, EDTA (in two-fold excess) and a final pH of 4.0; consistent with this observation

FIGURE 6 Variation of $\ln[\cdot CH_2CMe_2OH]$ with time after mixing (t) in the Fe^{ll}EDTA/H₂O₂/Bu¹OH system at pH 7.3 and 296 K. [Fe^{ll}]₀ 6.7 × 10⁻⁴, [EDTA] 1.34 × 10⁻³, [H₂O₂] 5.3 × 10⁻³ [Bu¹OH] 0.35 mol dm⁻³.

it has been shown that the rate constant of the reaction of $Fe^{11}EDTA$ and H_2O_2 increases with decrease in pH.¹⁴

All subsequent experiments were carried out under conditions which ensured an excess of chelate (with ratio at least 2:1) to buffer the reaction system. In this way we studied the reaction of \cdot OH with Bu^tOH in the presence of a variety of chelates of Fe^{II} (HEDTA, EDDA, DTPA, NTA, citrate and tartrate). In each case good kinetic behaviour [according to Eq. (16)] was observed; the resulting values of k_3 are shown in Table III.

TABLE	ш
-------	---

Rate constants for the reaction between Fe^{II} and H_2O_2 in the presence of a variety of chelating agents at pH 7.2 (±0.1) and 296 (±2) K^a

Chelate	$k/10^3 \mathrm{dm^3mol^{-1}s^{-1}}$	Lit values, $k/10^3 \text{dm}^3 \text{mol}^{-1} \text{s}^{-1}$
EDTA pH 7.2	7.1 ± 0.4	7, ^{11,15} 9, ¹⁴ 14 ³¹
pH4	10 ± 1	$[39 (FeEDTA^{-})^{14}]$
HEDTA	10 ± 1	17,14 4211
EDDA ^b	23 ± 2	78 ³²
DTPA	2.7 ± 0.6	$0.4^{31}, 0.5^{11}, 0.8^{15}, 1.3^{9}$
NTA ^b	9.7 ± 0.7	10^{15} 18, ¹⁴ 30 ³²
Citrate	4.9 ± 0.2	4.9
Tartrate ^b	5.3 ± 0.8	

*Except where stated otherwise [L]: $[Fe^{II}]$ 2:1. Literature values refer to pH ca. 7 except where stated otherwise. Errors ± 1 S.D.

^b[L]:[Fe^{II}] 3:1.

Oxidation and Reduction of Radicals by Iron Complexes

The possibility that alkyl radicals containing electron-withdrawing groups (e.g. \cdot CH₂CMe₂OH) can be reduced by Fe^{II}EDTA [reaction (18); *cf.* Ref. 12] was explored via kinetic E.S.R. experiments in which the variation of [R ·] (\cdot CH₂CMe₂OH) with Fe^{II} was explored. We first established that at relatively low concentrations of Fe^{II} compared with H₂O₂ [conditions under which Eq. (16) can be applied for kinetic analysis], the steady-state concentration was indeed proportional to [Fe^{II}]₀^{1/2} as shown in Figure 7 (deviation from linearity in experiments of this type has been used previously to establish²⁸ the rapid reduction of α -keto conjugated radicals by Ti^{III} and Fe^{II}). Experiments were then conducted at low concentrations of H₂O₂ (1.3 × 10⁻³ mol dm⁻³) and a range of comparable Fe^{II} concentrations (6.7 × 10⁻⁴-5.4 × 10⁻³ mol dm⁻³) in order to increase the rate of effective radical reduction; since Eq. (16) no longer holds under these conditions, we used a kinetic simulation approach to studying the variation of \cdot CH₂CMe₂OH with [Fe^{II}]₀.

$$Fe^{II}EDTA + \cdot CH_2CMe_2OH \longrightarrow Fe^{III}EDTA + [-CH_2CMe_2OH] \longrightarrow products$$
(18)

In a series of experiments with $Fe^{II}EDTA$ and H_2O_2 with large excess of Bu^tOH (to scavenge \cdot OH) and mixing time 27 ms, we found that the concentration of • CH₂CMe₂OH increased with increasing $[Fe^{II}]_0$ up to a maximum at $[Fe^{II}]_0$ 2.7×10^{-3} mol dm⁻³ (see Figure 8). Computer simulations were then carried out with inclusion of the reactions between Fe^{II}EDTA and $H_{2}O_{2}$ the (k7.1 × 10³ dm³ mol⁻¹ s⁻¹), HO · and Bu¹OH (k 5.8 × 10⁸ dm³ mol⁻¹ s⁻¹)²³ the selftermination of \cdot CH₂CMe₂OH (k 1.0 × 10⁹ dm³ mol⁻¹s⁻¹)²⁹ and different values of k_{18} : all other parameters employed were the same as those used in the experiments. As can be seen from Figure 8, the predicted variation in $[\mathbf{R} \cdot]$ as $[\mathbf{Fe}^{II}]_0$ is increased does indeed show a decrease after the initial build-up, for higher values of the rate constant for reduction. Comparison of experimental results and the computer simulation suggests that the rate constant for reaction (18) is $ca. 2 \times 10^6 \,\mathrm{dm^3 \, mol^{-1} \, s^{-1}}$ in aqueous solution at room temperature. This result and calculation, relevant to conditions under which $[Fe^{II}]_0 \ge [H_2O_2]$ adds further weight to our proposal that

FIGURE 7 Variation of [· CH₂CMe₂OH] with [Fe^{II}]₀^{1/2} in the Fe^{II}EDTA/H₂O₂/BuⁱOH system at pH 7.2 and 296 K, with mixing time 27 ms. 2[Fe^{II}]₀ = [EDTA]₀, [H₂O₂] 1.0 × 10⁻², [BuⁱOH] 0.35 mol dm⁻³.

• OH is indeed formed but that interaction of Fe^{II} with • CH_2CMe_2OH , at least, can account for some of the anomalies previously reported.

We also employed a related approach to model the reaction of Fe^{II} EDTA and H₂O₂ in the presence of EtOH. In a series of experiments at pH7 with $[H_2O_2]_0$ $5 \times 10^{-3} \text{ mol dm}^{-3}$, $[EtOH]_0 0.6 \text{ mol dm}^{-3}$ and t 0.027 s we monitored the steady state concentration of the α and β radicals, \cdot CHMeOH and \cdot CH₂CH₂OH respectively, as a function of $[Fe^{II}]_0$ in the range $3-9 \times 10^{-4} \text{ mol dm}^{-3}$. As can be seen from Figure 9, there is reasonable agreement between the absolute value of this ratio and its dependence on $[Fe^{II}]_0$ and the calculations which incorporated the following kinetic

FIGURE 8 Kinetic simulations of the predicted variation of $[\cdot CH_2CMe_2OH]_0$ with $[Fe^{II}]_0$ for different values of k_{18} in the Fe^{II}EDTA/H₂O₂/Bu¹OH system, together with experimental results. For $[H_2O_2]_0$ 1.3 × 10⁻³, $[Bu^1OH]_0$ 0.35 mol dm,⁻³, mixing time 27 ms.

parameters (k): for Fe^{II}EDTA + H₂O₂ 7.1 × 10³, HO · + EtOH 1.9 × 10⁹(α), 1.5 × 10⁸(β),⁶ · CHMeOH + H₂O₂ [reaction (7)] 1.5 × 10⁵, · CH₂CH₂OH + Fe^{II}EDTA 2 × 10⁶ (see earlier) and radical termination 1 × 10⁹ dm³mol⁻¹s⁻¹ together with a rate constant for oxidation of · CHMeOH by Fe^{III} [reaction (11)] of the order of 10⁹ dm³mol⁻¹s⁻¹. We believe that our experiments confirm that the "anomalous" α : β ratio observed in the E.S.R. experiment simply reflects the occurrence of oxidation of the electron-rich α -radical by Fe^{III} and that the rate constant is in the range 1.0–1.5 × 10⁹ dm³mol⁻¹s⁻¹. A similar analysis has recently been

RIGHTSLINKA)

36

FIGURE 9 Experimental dependence of [\cdot CHMeOH]/[\cdot CH₂CH₂OH] on [Fe^{II}]₀ in experiments with pH 7.1, 296 K, [H₂O₂]₀ 5.0 × 10⁻³, [EtOH]₀ 0.6 mol dm⁻³, t 27 ms, [EDTA] = 2 × [Fe^{II}]₀, together with simulations employing these conditions, different rate constants for the oxidation of \cdot CHMeOH by Fe^{III} ($k/10^9$ dm³ mol⁻¹ s⁻¹) and other rate constants given in the text.

employed by us to obtain rate constants of radical oxidation and reduction by a number of iron complexes of polyaminophosphonic acids.³⁰

CONCLUSIONS

We believe that a consistent picture emerges from the results of E.S.R. experiments on the Fenton reaction between $Fe^{II}EDTA$ (and some related ligands) and H_2O_2 in the presence of organic substrates. The crucial intermediate produced under the conditions employed (mostly with $[H_2O_2] > [Fe^{II}]$) is indeed the hydroxyl radical (effectively "free" rather than in "bound" or complexed form).

Kinetic analysis of the formation and reaction of the intermediate formed from Fe^{II}

and H_2O_2 (and which reacts to give organic radicals) is entirely as expected if the hydroxyl radical is indeed formed as the sole transient; further, it is encouraging to note that the rate constants derived from the Fenton reaction in aqueous solution at ambient temperature broadly match those reported using other techniques, including recent spin-trapping experiments³¹ (see Table III). For results at pH 7 there is best agreement between other results and those of Borggaard¹⁴ and Sutton and Winterbourn.¹⁵

In comparing the rate constants for the different ligands we note that the order $Fe^{II}aq < Fe^{II}$ citrate $< Fe^{II}EDTA$ is as expected if, in an outer-sphere reaction, the rate constant is governed largely by thermodynamic factors (E values of 0.71,¹⁶ 0.6,³³ and 0.12,¹⁶ respectively); however, the observation of a relatively low rate constant for Fe^{II}DTPA (for which E is 0.03)¹⁶ indicates that an inner sphere process is probably involved.

Kinetic analysis of steady state experiments with certain substrates (e.g. EtOH, Bu'OH) provides further evidence that reactions of Fe^{III} and Fe^{II} with some intermediate radicals (e.g. \cdot CHMeOH and \cdot CH₂CMe₂OH, respectively) must be taken into account if a full and detailed understanding of the reaction system is to be obtained.

Acknowledgements

We thank the British Technology Group for support and Dr. M.J. Stockham for helpful discussions.

References

- C.S. Lai and L.H. Piette (1978) Spin trapping studies of hydroxyl radical production involved in lipid peroxidation. Archives of Biochemistry and Biophysics, 190, 27–38.
- B. Halliwell (1978) Superoxide-dependent formation of hydroxyl radicals in the presence of iron salts. Its role in the degradation of hyaluronic acid in a superoxide-generating system. FEBS Letters, 19, 238-242.
- 3. F. Haber and J. Weiss (1932) The catalysis of hydrogen peroxide. Naturwissenschaften, 20, 948-950.
- 4. W.C. Bray and M.H. Gorin (1932) Ferryl ion, a compound of tetravalent iron. Journal of the American Chemical Society, 54, 2124-2125.
- 5. C. Walling (1975) Fenton's reagent revisited. Accounts of Chemical Research, 8, 125-131.
- B.C. Gilbert and M. Jeff (1988) Oxidative damage and radical repair. One-electron transfer reactions involving metal ions, peroxides and free radicals. In *Free Radicals in Chemistry, Biology and Medicine* (Eds. C. Rice-Evans and T. Dormandy), Richelieu Press, 25-49.
- B.C. Gilbert, J.K. Stell and M. Jeff (1988) Electron-spin resonance studies of the effect of copper(II) and copper(I) on the generation and reactions of organic radicals formed from the Fenton reaction and the Ti^{III}-H₂O₂ and Ti^{III}-S₂O²⁻₈ redox couples. *Journal of the Chemical Society, Perkin Transactions*, 2, 1867.
- J.D. Rush and W.H. Koppenol (1986) Oxidizing intermediates in the reaction of ferrous EDTA with hydrogen peroxide. Reactions with organic molecules and ferricytochrome c. *Journal of Biological Chemistry*, 261, 6730-6733.
- S. Rahaal and H.W. Richter (1988) Reduction of hydrogen peroxide by the ferrous iron chelate of diethylenetriamine-N,N,N¹,N¹¹,N¹¹-pentaacetate. Journal of the American Chemical Society, 110, 3126-3133.
- T. Shiga (1965) An electron paramagnetic resonance study of alcohols oxidized by Fenton's reagent. Journal of Physical Chemistry, 69, 3805-3814.
- 11. J.D. Rush and W.H. Koppenol (1987) The reaction between ferrous polyaminocarboxylate complexes and hydrogen peroxide: an investigation of the reaction intermediates by stopped flow spectrophotometry. *Journal of Inorganic Biochemistry*, **29**, 199-215.
- 12. M.K. Eberhardt (1984) Formation of olefins from alkyl radicals with leaving groups in β -position. Journal of Organic Chemistry, 49, 3720-3725.
- 13. S. Goldstein, G. Czapski, H. Cohen and D. Meyerstein (1988) Formation and decomposition of

iron-carbon α -bonds in the reaction of iron(II)-poly(aminocarboxylate) complexes with CO_2^- free radicals. A pulse radiolysis study. *Journal of the American Chemical Society*, **110**, 3903-3907.

- 14. O.K. Borggaard, O. Farver and V.S. Andersen (1971) Polarographic study of the rate of oxidation of iron (II) chelates in hydrogen peroxide. *Acta Chemica Scandinavica*, 25, 3541-3542.
- H.C. Sutton and C.C. Winterbourn (1984) Chelated iron-catalysed OH formation from paraquat radicals and H₂O₂: mechanism of formate oxidation. Archives of Biochemistry and Biophysics, 235, 106-115.
- W.H. Koppenol and J. Butler (1985) Energetics of interconversion of oxyradicals. Advance in Free Radicals in Biology and Medicine, 1, 91-131.
- R.J. Faber and G.K. Fraenkel (1967) Dynamic frequency shifts and the effect of molecular motions in the electron spin resonance spectra of dinitrobenzene anion radicals. *Journal of Chemical Physics*, 47, 2462-2476.
- 18. G.P. Laroff and R.W. Fessenden (1973) Equilibrium and kinetics of the acid dissociation of several hydroxyalkyl radicals. *Journal of Physical Chemistry*, **77**, 1283-1288.
- 19. J.Q. Adams, S.W. Nicksic and J.R. Thomas (1966) Paramagnetic resonance of alkyl nitroxides. Journal of Chemical Physics, 45, 654-661.
- Landolt-Bornstein (1977) Magnetic Properties of Free Radicals, Group II, New Series, Springer-Verlag, Berlin, vol. 9, Part 6.
- B.C. Gilbert, R.O.C. Norman, P.S. Williams and J.N. Winter (1982) Electron spin resonance studies Part 63. Selective radical oxidation by titanium (IV) complexes. *Journal of the Chemical Society*, *Perkin Transactions*, 2, 1439-1448.
- W.A. Seddon and R.O. Allen (1967) Radiation chemistry of aqueous solutions of ethanol. Journal of Physical Chemistry, 71, 1914–1918.
- Farhataziz and A.B. Ross (1977) Selected specific rates of reaction of transients from water in aqueous solution, III. Hydroxyl radical and perhydroxyl radical and their radical ions. National Standard Reference Data System, National Bureau of Standards, Washington.
- B.C. Gilbert, R.O.C. Norman, and R.C. Sealy (1974) Electron spin resonance studies, Part XL. A kinetic investigation of the oxidation of oxygen-substituted radicals by hydrogen peroxide. *Journal of* the Chemical Society, Perkin Transactions, 2, 824-829.
- 25. K. Eiben and R.W. Fessenden (1971) Electron spin resonance studies of transient radicals in aqueous solution. *Journal of Physical Chemistry*, **75**, 1186-1201.
- G. Czapski (1971) Electron spin resonance studies of short-lived radicals generated by fast-flow techniques in aqueous solution. Journal of Physical Chemistry, 75, 2957–2967.
- G. Schwartzenbach and J. Heller (1951) Complexone XVIII Die Eisen(II)- Und Eisen(III)-Komplexe der Athylenediamin-tetraessigsaure und ihre Redoxgleichgewicht. *Helvetica Chimica Acta*, 34, 576– 591.
- B.C. Gilbert, R.O.C. Norman and R.C. Sealy (1973) Electron spin resonance studies Part XXXIX. A kinetic investigation of the rate of radical reduction in metal ion-hydrogen peroxide systems. Journal of the Chemical Society, Perkin Transactions, 2, 2174-2180.
- 29. M. Simic, P. Neta and E. Hayon (1969) Pulse radiolysis study of alcohols in aqueous solution. Journal of Physical Chemistry, 73, 3794-3800.
- S. Croft, B.C. Gilbert, J.R. Lindsay Smith, J.K. Stell and W.R. Sanderson (1992) Mechanisms of peroxide stabilization. An investigation of some reactions of hydrogen peroxide in the presence of aminophosphonic acids. *Journal of the Chemical Society, Perkin Transactions*, 2, 153-160.
- 31. I. Yamasaki and L.H. Piette (1990) Spin-trapping study of the reaction of Fe²⁺ ions with reactive species in oxygen toxicology in biology. *Journal of Biological Chemistry*, **265**, 13589-13594.
- 32. J.D. Rush and W.H. Koppenol (1988) Reactions of Fe^{II} nta and Fe^{II} edda with hydrogen peroxide. *Journal of the American Chemical Society*, **110**, 4957–4963.
- 33. R.E. Hamm, C.H. Schull, Jnr and D.M. Grant (1954) Citrate complexes with iron(II) and iron(III), *Journal of the American Chemical Society*, **76**, 2111–2114.

Accepted by Prof. B. Halliwell